Deformations of Minimal Lagrangian Submanifolds with Boundary

نویسنده

  • Adrian Butscher
چکیده

Let L be a special Lagrangian submanifold of R with boundary lying on the symplectic, codimension 2 submanifold W . It is shown how deformations of L which keep the boundary of L confined to W can be described by an elliptic boundary value problem, and two results about minimal Lagrangian submanifolds with boundary are derived using this fact. The first is that the space of minimal Lagrangian submanifolds near L with boundary on W is found to be finite dimensional and is parametrised over the space of harmonic 1-forms of L satisfying Neumann boundary conditions. The second is that if W ′ is a symplectic, codimension 2 submanifold sufficiently near W , then under suitable conditions, there exists a minimal Lagrangian submanifold L′ near L with boundary on W ′.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropic Lagrangian Submanifolds in Complex Space Forms

In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.

متن کامل

Deformations of Asymptotically Cylindrical Special Lagrangian Submanifolds with Moving Boundary

In [19], we proved that, under certain hypotheses, the moduli space of an asymptotically cylindrical special Lagrangian submanifold with fixed boundary of an asymptotically cylindrical Calabi-Yau 3-fold is a smooth manifold. Here we prove the analogous result for an asymptotically cylindrical special Lagrangian submanifold with moving boundary.

متن کامل

Regularising a Singular Special Lagrangian Variety

Suppose M1 and M2 are two special Lagrangian submanifolds of R 2n with boundary that intersect transversally at one point p. The set M1 ∪M2 is a singular special Lagrangian variety with an isolated singularity at the point of intersection. Suppose further that the tangent planes at the intersection satisfy an angle condition (which always holds in dimension n = 3). Then, M1 ∪ M2 is regularisabl...

متن کامل

Second Variation of Compact Minimal Legendrian Submanifolds of the Sphere

The second variation operator of minimal submanifolds of Riemannian manifolds (the Jacobi operator) carries information about stability properties of the submanifold when it is thought of as a critical point for the area functional. When the ambient Riemannian manifold is a sphere S, Simons [S] characterized the totally geodesic submanifolds as the minimal submanifolds of S either with the lowe...

متن کامل

Regularizing a Singular Special Lagrangian Variety

Suppose M1 and M2 are two special Lagrangian submanifolds with boundary of R , n ≥ 3, that intersect transversally at one point p. The set M1 ∪M2 is a singular special Lagrangian variety with an isolated singularity at the point of intersection. Suppose further that the tangent planes at the intersection satisfy an angle criterion (which always holds in dimension n = 3). Then, M1 ∪ M2 is regula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001